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The Rheology of Filled Polymers 

N. J. MILLS,* Imperial Chemical Industries Limited, 
Petrochemical & Polymer Laboratory, The Heath, Runcorn, Cheshire, England 

synopsis 
The flow properties of polymer melts containing fillers of various shapes and sizes have 

been examined. If there is no failure of either the filler or polymer in the solid state, then 
the modulus enhancement for randomly distributed filler is equal to the melt viscosity 
enhancement under medium shear stress conditions (10' Nm-e) in simple shear flow or 
in oscillatory shear flow. Submicron-size fillers, in particular, can form weak structures 
in the melt that greatly increase the low shear rate viscosity without changing the modu- 
lus of the solid proportionately. The highly pseudo-plastic nature of polymer melts a t  
shear stresses of 106 Nm-* means that, even withopt orientation of filler particles to- 
ward the flow direction, the viscosity enhancement is less than at lower shear stresses. 

INTRODUCTION 
The use of inorganic fillers of various kinds in polymers has become com- 

mon, and the mechanical properties of the composites are fairly well under- 
stood. Far less is known of how a filler modifies the flow properties of a 
polymer. Usually when the use of fillers is considered, a compromise has to 
be made between improved mechanical properties in the solid state, the in- 
creased difficulty of melt processing, the problem of dispersing filler in the 
polymer, and the economics of the process. Therefore it is important to 
know the relationship between filler concentration and geometry and the 
%ow properties of the composite. 

There is a theoretical correspondence between slow viscous flow of a liquid 
and the infinitesimal strain elasticity of a solid. This has been used' to pre- 
dict that the viscosity q of liquid containing filler and the shear modulus G of 
a solid containing an identical distribution of rigid filler are related to the 
quantities for the unfilled matrix 70, Go by 

q / t o  = G/Go. (1) 
In the case of thermoplastics, the same system can easily be studied in both 
the solid and liquid states, and conditions for the validity of this equality 
are established in this paper. Useful predictions about solid composites 
may then be made from the study of filled liquids and vice versa. 

It is known qualitatively from the study of postextrusion swelling2 of 
filled polymers that the melt elasticity decreases with increasing filler con- 
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tent. 
correlate the effects of such changes. 

An attempt was made to measure melt elasticity quantitatively and 

THEORY 
Thomas3 has reviewed the investigations of the viscosity of suspensions of 

spheres in Newtonian (constant viscosity) media. After allowing for ef- 
fects of sphere size, he showed that the viscosity increase in a medium con- 
taining a volume fraction + of uniform-sized spheres is 

1- - 1 + 2.54 + 10.0542 + 0.00273 exp (16.w) for 0 < 4 < 0.6 (2) 
TO 

The second term on the right-hand aide of eq. (2) is due to Ein~te in ,~  the 
third to Manley and and the fourth is empirical. If the condition 
of uniform-sized spheres is relaxed, eq. (2) overestimates the suspension 
viscosity. Farrisa predicts that for a bimodal-size distribution of spheres 
with a diameter ratio greater than 10, there is zero interaction between the 
two sizes, and the viscosity of the suspension is the product of two terms 
given separately by eq. (2) for the partial volume fractions. 

There are exact theories’ for the viscosity of very dilute suspensions of 
ellipsoids and rods, but none for the higher concentration region. The 
semiempirical theories of Robinsons and Mooneye for concentrated suspen- 
sions of spheres may be of some help in the analysis of data for nonspherical 
fillers. Thus, Brodnyan’O has used the equation 

l ) I - 7  (3) 
T 2.54 + 0.3994(p - 
TO 1 - K 4  - = exp ( 

to describe the viscosity of suspensions of rods with axial ratio p for c j  < 
0.01. 

If eq. (1) is valid, then theories such as Kerner’s for the shear modulus 
of a suspension of grains that are in the mean spherical can be applied to the 
viscosity of filled polymers. If the polymer has shear modulus GO and 
Poisson’s ratio v and contains a volume fraction 4 of filler with shear modu- 
lus G2, then the composite shear modulus G is given by 

The constant K tends toward 1.91 asp increases. 

G24 1 - 4  
G 
Go GO4 1 - 4  

(4) 
(7 - 5v)Go + (8 - 10v)Gz 

(7 - 5v)Go + (8 - 10v)Gz 

15(1 - v). 

15(1 - v) 

_ -  - 

This result is identical to the lower bound of the elastic modulus of quasi- 
isotropic and quasi-homogeneous two-phase materials of arbitrary geom- 
etry calculated by Hashin and Shtrikman.12 For a polymer melt, v = 0.5, 
and the modulus ratio GZ/Go is effectively infinite for most fillers. Applying 
eq. (1) , we have from eq. (4), therefore, 
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Polymer melts generally have apparent viscosities that decrease with in- 
creasing rate of shear in steady shear flow and show a number of elastic 
propcrtics reminiscent of those of rubbcrs. Undcr high shcar stresses, thc 
melt bccomcs anisotropic in its propcrtics. This corrcsponds to an align- 
ment of polymer molecules from random coil configurations at rest into 
ellipsoidal shapes partially oriented toward the flow direction. It is only at 
low shear rates in simple shear flow, or at low frequencies in oscillatory shear 
flow when the polymer response is mainly a viscous one (the Newtonian 
flow region is being approached), that eqs. (2) or (5)  are expected to be valid. 

One particular molecular theory has been used to interpret the low stress 
behavior of polymer melts. In  this, the elastic liquid theory of Lodge,13 
the melt is treated as if it contained transient rubber networks that are coil- 
tinually breaking and reforming. These “entanglement” networks are 
characterized by an entanglement lifetime function p ( r ) ,  where T is the time 
for which an entanglement has existed. Rheological quantities such 
as the shear modulus GI for an instantaneous small strain and the in-phase 
and out-of-phase components G‘ and G” of the complex shear modulus G* for 
a sinusoidal strain are given by 

Lim- = 
-0 w 

(7) 

where w is the angular frequency, qo is the viscosity in steady shear flow, 
and J is the “steady state shear compliance.’’ Fillers could change the en- 
tanglement lifetime function either through hydrodynamic effects or by 
chemical interaction with the polymer. 

Although eq. (7) only applies to polymers when they behave as New- 
tonian liquids, it has been observed14 that the steady shear apparent vis- 
cosity qa at  shear rate + is equal to the magnitude of the oscillatory vis- 
cosi ty : 

EXPERIMENTAL 

Techniques 

Melt viscosities in steady flow shear were measured with both a Weissen- 
berg rheogoniometer cone-and-plate viscometer (Model R16 manufactured 
by Sangamo Controls Ltd., cone diameter 2.5 cm and 4 O  angle, cone trun- 
cated by 178 pm) and, a t  higher shear rates, with a small capillary viscom- 
eter.15 Two capillary lengths of the same diameter were used so that cor- 
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rections could be made for pressure losses near the capillary entrance. 
The melts were also studied in the Weissenberg rheogoniometer with the 
same cone-and-plate platens, using a sinusoidal strain input of amplitude 
0.12. The piezoelectric measuring head and transfer function analyzer 
used in oscillatory shear measurements have been described previously. l6 
Steady shear measurements could only be made in the cone-and-plate vis- 
cometer for the polymers studied for shear rates less than 0.5 sec-l. Above 
this value, material is ejected from the gap and decreasing torque readings 
are obtained. This difficulty did not occur with oscillatory shear measure- 
ments. No degradation of the polymers occurred, identical results being 
obtained at the beginning and end of testing. 

Stress-strain measurements were made on some of the composites using a 
Hounsfield E tensile testing machine, with a 1-in. gauge length extensometer 
for strain measurement, a t  a strain rate of 5%/min. Shear moduli of some 
solid composites were also measured using an air-bearing torsion pendulum 
at a frequency -3 sec-’ and maximum shear strain of Note that 
throughout this paper frequency means angular frequency in radians/sec. 

Composites 

Table I lists the combinations of polymer and filler used and the method 
of preparation of the composites. 

TABLE I 
Composite Formulation 

Filler 

Shape Material Size Polymer. Mixing method 

Sphere 

Rod 

Rod 

Platelets 
aspect 
ratio 
-5: 1 

Irregular 

glass 130 pm 

“E” glassb 6 mm X 15 pm 

nylon 6 

nylon 6 

1.5 mm X 50 pm 

600 pm X 20 pm 

kaolinc 50% < 0.7 pm 
range 0.1-10 pm 

colloidal 4 nm 
silicad 

polystyrene Carinex 
MW 

H.D. polyethylene 
Rigidex 2 
polystyrene Carinex 

MW 
polystyrene anionic 

L.D. polyethylene 
Alkathene XpG58 

dry blend-injee 
tion mold 

Frenkel mixer‘ 

dry blend-m- 
pression mold 

solution blend- 
compression mold 

twin-roll mill 

L.D. polyethylene Brabender internal 
Alkathene XRM2l mixer 

~ ~~ 

8 Ballotini Manufacturing Co. Ltd., Barnsley, Yorks. 
b Length after mixing given in Table 11. 
0 English China Clays, Speswhite (SDS). 
d British Drug House. 
e The Carinex polystyrene was in the form of beads of roughly 400 Fm diameter, and 

f The Frenkel mixer is a small extruder, the output of which passes through a 1-mm 
the polyethylenes were in granular form. 

diameter die, 
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RESULTS 
Spherical Filler 

Figure 1 shows the complex shear modulus data versus frequency foi the 
polystyrene with different loadings of glass spheres. A comparison of the 
dynamic shear modulus of injection-molded unfilled polyst,yrene with a 
sample compression-molded under a vacuum showed that there had been 
negligible degradation of the polystyrene during fabrication. The effect of 
increasing the t$ of glass spheres is to increase G' and G" in equal ratios at a 
given frequency, so that the frequency at  which G' equals G" stays constant. 
The unfilled polystyrene shows the beginning of the rubbery plateau region 
for GI' at  a level of 5 X lo4 Nm-2. This level is characterjstic of the en- 
tanglement network of polystyrene1' and extends to the frequency (-lo4 
sec-' a t  190°C) where the glass transition begins. The rise in the plateau 
level with addition of filler can be interpreted as the entanglement network 
being reinforced by the glass spheres. For unfilled polymers, the effect of a 
change of temperature, or of molecular weight if the molecular weight dis- 
tribution width is the same, is to shift the log complex shear modulus versus 
log frequency curves along the frequency axis. The addition of a volume 
fraction 4 of filler apparently increases each of the three quantities in eqs. 
(6) to  (8) by a factor K(4)) .  Hence the melt compliance measured either as 
1/G' (plateau) (see Ferry18) or as the steady shear compliance J = Lim,,, 
(G'/G"2) decreases as l/K(t$). 

Steady shear measurements made by Newman and Trementozzi2 on poly- 
styreue-acrylonitrile containing glass beads show approximately equal vis- 
cosity increases a t  a shear rate of 3 see-l (Fig. 2) to our oscillatory data, 

3 

' 
2-2 -1 0 1 2 

log w s-' 
Fig. 1. Log G" (solid lines) and G' (dashed lines) vs. log frequency for polystyrene 

(0) @ = 0 ;  (0) @ = 0.092; (A) @ = 0.223; (V) @ = 
For clarity, in this figure and in figs. 3, 6, and 10, experimental points have 

Data were taken at intervals of 0.3 in log w (0.5 in Figs. 3, 6, lo), and 

containing glass sphere at 190OC: 
0.411. 
been omitted. 
the curved lines through these points are shown. 
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I I 

0.2 0.3 0.4 
CP 0% 0:1 

Fig. 2 .  Viscosity and modulus ratios vs. of glass spheres in polystyrene E / E ,  a t  
20°C: (0) 0.001 strain; (0)  0.003 strain; (A) 0.010 strain; (7) Iq*l/ly*,l a t  190°C and 
1 s - I ;  &qa/qaa a t  204°C and 3 sec-l (ref. 2). Solid line, eq. ( 5 ) ,  dashed line, eq. ( 2 ) .  

This increase is less a t  higher shear rates and may be higher in the Newto- 
nian flow region. The viscosity data in Figure 2 falls between the lines for 
eqs. (2) and (5). Apart from when the volume fraction of glass was low, 
the Young’s modulus ratios for the composites fall well below the viscosity 
ratios in Figure 2. The Young’s modulus decreased with increasing strain 
up to 1%’ but on unloading from this strain the modulus remained approxi- 
mately constant. It 
is suggested that some factor, possibly the molded-in orientation of the poly- 
styrene or the differential contraction of glass and polystyrene on cooling 
from T,, causes failure to occur at or near the polystyrene-glass interface a t  
low strains. This effect occurs a t  lower strain levels the higher the volume 
fraction of spheres. After this failure, the composite is similar to a polysty- 
rene foam with E/E,  N 1 - 4. When glass spheres having different sur- 
face treatments to vary adhesion were embedded in epoxy resinlg (no matrix 
orientation or thermal contraction stresses) the composite modulus followed 
Kerner’s theory. The same was true of low-strain shear moduli measure- 
ments of glass spheres in phenoxy thermoplastic.20 Therefore this failure is 
not a general phenomenon. 

The initial reinforcement did not occur on reloading. 

Rod-Shaped Fillers 

When glass fiber of l/*-in. length was mixed with high-density polyethyl- 
Some of ene in an extruder, considerable breakage of the fiber occurred. 
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L I.tm 
Fig. 3. Number fraction of glass fibers iir polyethylene within length categories. Solid 

lines, @ = 0.04; dashed lines, @ = 0.19. 

6 

5 
log 
d G" 

Nlli2 

4 

3 
log 0 s' 

Fig. 4. Log G" (solid lines) and G' (dashed lines) vs. log frequency for glws fibers in 
polyethylene at 190OC: (0) = 0; (0) @ = 0.10; (A) @ = 0.19. 

<p 
Fig. 5. Viscosity and modulus ratios vs. @ of glsss fiber in polyethylene: (0) G'/Go' at 

30"C, 3 sec-'; (0) 1q*1)1~0*1 at 190°C, 1 sec-1. Solid line, eq. (2). 
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the granulated composite was extracted in a Soxhlet extractor with xylene, 
and the glass fiber was examined under an optical microscope. Figure 3 
shows the fiber length distribution. This type of length distribution is 
typical in glass fiber-filled thermoplastics. 

-2 -1 0 1 
log GI s' 

Fig. 6. Log G" (solid lines) and G' (dashed lines) vs. log frequency for nylon fibers in 
anionic polystyrene at 901°C: (0) @ = 0; (0) @ = 0.10; (A) @ = 0.20; (V) @ = 0.30; 
(*) @ = 0.40. 

Fig. 7. Viscosity and Young's modulus ratios vs. filler content: (0) anionic polysty- 
rene/nylon fibers G" plat/Gu plat0 a t  190°C; (0) polyethylene/kaolin E/Eo  at 0.01 
strain 20°C; (v) qo/qao I sec-1 a t  190°C; (A) lv*l / lvo*[ 1 sec-1 at 190°C; (I) po~y- 
ethylene/silica E/Eo at 0.01 strain 20°C. 
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NIT? 

6 

O -1 -2 -1 
log y s 

Fig. 8. Log shear stress vs. log shear rate for nylon fibers in Carinex polystyrene at 
190°C: (0) CP = 0;  (A) = 0.19; ('I) iP = 0.38. 

71 I I I 

1 

Fig. 9. Capillary viseometer and pressure correction vs. shear rate for nylon fibers in 
Carinex polystyrene at 190°C. Symbols as in Fig. 7. 

Samples of the glass fiber-polyethylene composites were compression 
molded under vacuum, and then oscillatory shear measurements were made 
at  190°C. Figure 4 shows the complex shear modulus-versus-frequency re- 
sults. The results for + = 0.05 have been omitted as they fall midway be- 
tween t$ = 0 and + = 0.10 and are very similar. The broad molecular 
weight distribution of the polyethylene (gel permeation chromatography re- 
sults give f l n  = 7.4 X lo3, f l w  = 2.3 X lo5, f l z  = 2.3 X lo6) means that, 
G' and G" stay comparable in magnitude throughout the frequency range. 
As in the polystyreneglass spheres case, a t  a given frequency both G' and 
G" are increased in the same ratio. 

Continuous shear measurements with a capillary viscometer (not shown) 
give an apparent viscosity enhancement factor a t  + = 0.20 of 1.5 a t  shear 
rate 30 sec-' and 1.4 at  900 sec-' (the shear stress for the polymer alone 
was 100 and 300 kNm-*, respectively, a t  the two shear rates). 

Compression-molded bars of the glass-filled polyethylene were annealed 
at  lOO"C, and then the shear modulus was measured at  30°C with a tor- 
sion pendulum. The shear modulus enhancement factors in the solid state 
and the viscosity data are shown in Figure 5 to be given approximately by 
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cq. (2 ) .  Tensile modulus experiments at room temperature and 0.005 strain 
gave the same modulus enhancement factors, although the Young's moduli 
measured were nearly the same as the shear moduli at  strain, show- 
ing the nonlinear elasticity of polyethylene. 

To overcome the variation in fiber length distribution in glass fiber-filled 
polyethylene, composites of polystyrene and nylon fibers cut to a uniform 
length were made. At 19O"C, the shear modulus of the nylon is 2 X lo8 
Nrn+ measured with a torsion pendulum at low strains. The fibers arc 
not broken during compression molding, and they were tested either under 
oscillatory shear in the Weissenberg rheogoniometer (random orientation of 
fibers) or in continuous shear (increasing orientation with increasing shcar 
rate, particularly in the capillary flow case where the extensional flow above 
the capillary entrance aligns the fibers along the flow direction). 

Oscillatory shear results on the anionic polystyrene-nylon fibers are 
shown in Figure 6. For 4 = 0.10, there is only a vertical shift of the curves, 
with no change of shape. However, a t  higher filler contents, the slopes of 
both log G' and log G" versus log w decrease for w < 1 sec-l. At frequencies 
above 10 sec-' G" shows the typical plateau behavior of a high molecular 
weight narrow-distribution polystyrene. The increase in this plateau level 
with increasing cp is shown in Figure 7 to be slightly higher than the viscosity 
increase for the same volume fraction of monodisperse spheres, eq. (2). It 
is not realistic to characterize the changes in G" and G' at low frequencies 
as changes in the viscosity of the composite since such behavior is not that 
of a Newtonian liquid. Rather, it implies that a weak three-dimensional 
network is formed between touching nylon fibers, this network only having 
relaxation mechanisms at long times. 

Continuous shear measurements at  190°C with the Carinex polystyrene 
and larger nylon fibers (same length/diameter ratio) are shown in Figure 8. 
Again, the Newtonian region disappears for cp > 0.20. At cp = 0.40, there 
appears to be a definite yield stress of 1.5 X lo4 Nm-2 for flow to occur. 
However, the increases in shear stress in steady flow at low shear rates are 
not as great as the corresponding changes in complex shear modulus. The 
capillary flow experiments at shear rates of 1 sec-' and above show that 
the shear stress increase because the fiber is small, being only 1.4 at -300 
sec-' and 4 = 0.40. The computed pressure drop just above the capillary 
entrance is shown as a function of shear rate in Figure 9. The extra pres- 
sure drop due to the presence of fibers does not increase as rapidly as that 
for the polymer alone with increased shear rate. A certain pressure drop is 
required to orient the fibers from their initially random configuration, and 
the effect of the oriented fibers on the flow properties just above and in the 
capillary is not very large. 

Platelet-Shaped Particles 
The kaolinite consists of hexagonal plate-like particles of low aspect ratio 

(-5 : 1). Oscillatory shear results (Fig. 10) on carefully dried samples 
show that as the kaolin content increases, both the general level of G' and G" 
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-1 0 1 
log 0 s’ 

Yig. 10. LogG” (solid lines) and G‘ (dashed lines) vs. log frcquciicy for polycthyleiie/ 
kaolin at 190°C: (0) + = 0; (0 )  + = 0.16; (A) + = 0.25; (V) CP * 0.31. 

incrcascs and the dependence on log w decreases. Continuous shcar measurc- 
ments (Fig. 11) show similar viscosity increases that vary with shear rate. 
In particular, there is a yield stress behavior developing for 4 > 0.25 at  shear 
rates sec-’. A comparison of the viscosity enhancement factors is 
made with those for the Young’s modulus of the system at room temperature 
in Figure 7. The solid modulus data are similar to those of aluminum 
particles in polyethylene having good adhesion.22 The viscosity increases 
as a frequency or shear rate of 1 sec-1 are of the same magnitude. At lower 
frequencies and high 4, there is evidence of some filler “structure,” but at 
higher frequencies/shear rates this “structure” is not operative. Micron- 
sized kaolin filler is an intermediate case between the much larger filler par- 
ticles considered previously and the much smaller colloidal silica considered 
next. 

Irregular-Shaped Particles 

Colloidal silica in small amounts has a dramatic effect on the flow of a low- 
density polyethylene. Figure 12 shows that even a volume fraction of 0.005 
of silica increases G” by a factor of 1.8 at  w = 1 sec-’, and G’ by a slightly 
greater amount. More significantly, a t  low frequencies G‘ no longer varies 
as w2 (as predicted by various rheological theories and found for fairly nar- 
row MWD polymers). By 4 = 0.02, the low-frequency behavior of G* has 
changed completely, and both components appear to be tending toward fre- 
quency-independent values as w + 0. This is characteristic of a very weak 
network. The plateau value of G” is estimated as 500 Nm-2 for 4 = 0.02. 
As the concentration of colloidal silica increased, this plateau level increased 
rapidly. This is shown by continuous shear measurements with the Weis- 
senberg (Fig. 13) where, although the viscosity increases at low shear rates 
are not as great as the corresponding oscillatory results, the melt has a yield 
stress of -1500 Nm-2 at  4 = 0.05. As an indication of the change which 
colloidal silica can impart to low-density polyethylene, at 4 = 0.30 in Alka- 
thcne WJG 11 (Af.F.1. = 2), thc yield stress for continuous shear flow at 
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Fig. 11. Log shear stress vs. log shear rate for polyethylene/kaolin at 190°C. Symbols as 
in Fig. 10. 

I I I 

0 1 2 3 
log 0 s-’ 

Fig. 12. Log Go (solid lines) and G’ (dashed lines) vs. log frequency for silica in poly- 
ethylene at 190°C: (0) * = 0; (0) @ = 0.005; (A) * = 0.02. 

190°C is -3OOk Nm-2 and the shear modulus G’ measured with a torsion 
pendulum at 190°C is 6 MNm-2 at w = 3 sec-’. 

The Young’s modulus enhancement factors for the system at  a strain 
-0.01 are similar to those for low-density polyethylene-kaolin (Fig. 7; the 
limits are one standard deviation from the mean), i.e., there is none of the 
dramatic viscosity increase found in the low shear rate or frequency data. 

If the silica crosslinks the polyethylene chains together, the number N of 
crosslinks per m3 can be calculated, using the kinetic theory of rubber elas- 
ticity, by 

N = G/kT 

where k is Boltzmann’s constant and T is the absolute temperature. An 
order-of-magnitude calculation then shows that to achieve the quoted shear 
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Fig. 13. Log shear stress vs. log shear rate for silica in polyethylene at 190°C: (0)Q 
= 0; (0) Q = 0.01; Q = (A) Q = 0.02; (7) Q = 0.03; (*) rP = 0.03. Cone-and-plate 
viscorneter for shear rztes <5 sec-', capillary viscometer results uncorrected for entmnce 
pressure losses a t  kgher shear rates. 

modulus a t  low frequencies, a t  C$ = 0.30 each particle contributes 20 cross- 
links. 

DISCUSSION 

The effect of a filler on the ratio of apparent viscosities 9/70 of the filled/ 
unfilled polymer can change markedly with rate of shear in simple shear 
flow. The change is less a t  high frequencies in oscillatory shear flow since 
no overall orientation of the filler particles occurs. However, a t  very low 
frequencies the effect of weak structures formed by filler-filler or filler- 
polymer interaction is much greater than in simple shear flow. Therefore, 
the conditions for the validity of eq. (1) are: 

The viscosities should be measured under conditions where there is no 
marked anisotropy of the polymer melt, i.e., for steady shear flow the shear 
stress should be below -lo4 Nm-2, or the flow should be approximately 
Newtonian. For oscillatory shear flow, there may be an advantage in mak- 
ing measurements in the plateau region of G" (this means using high poly- 
mers of relatively narrow molecular weight distribution). 

For nonspherical fillers, viscosities should be measured where the ef- 
fects of weak filler structures are negligible. This rules out low shear rates/ 
frequencies and sets an upper limit on the volume fraction of filler. 

There should be no failure in the composite in the solid state a t  the 
strain a t  which measurements are made. 

The filler size should be >1 M, so that the surface area presented to 
the polymer, and hence the amount of polymer bound to the filler, should 
not be too great. Conversely, there should be no degradation of the poly- 
mer during incorporation of the filler. 

a. 

b. 

c. 

d. 
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Under the conditions when eq. (1) is valid, the filler is usually randomly 
oriented in space in the melt state. Variations in the filler modu- 
lus (if it is a t  least ten times than of the polymer) and geometry than have 
little effect on the modulus or viscosity ratio. Fillers of high aspect ratio 
have a greater effect on the viscosity than spheres, but this difference is 
small compared with the difference between the upper and lower shear mod- 
ulus bounds of Hashin and Shtrikman. Thus, the lower bound is a reason- 
able approximation of the behavior of quasi-isotropic polymers containing 
discontinuous fillers. 

The kaolinite and silica particles were of much smaller size than the other 
fillers studied, thus invalidating comparisons on the basis of shape alone. 
However, only in the case of the silica could the behavior be said to be 
markedly different. 

It is easier in the melt state than in the solid state to obtain isotropy of 
the polymer and random orientation of the filler. Consequently, more con- 
fidence can be placed in melt results, and it can be predicted that in the solid 
state for a given concentration of randomly oriented filler, the modulus of 
the composite will not increase much if glass spheres are replaced by carbon 
fibers. There may, however, be improvements in properties such as the 
tensile strength of the composite. In processes such as injection molding 
there can be considerable orientation of both the polymer and nonspherical 
fillers in the final article. In  such cases, the modulus ratio of the solid will 
be higher in some directions and lower in others than the viscosity ratio of 
the melt. 

The theoretical problem of the viscosity of suspensions of nonspherical 
particles remains. In  spite of the usezo of eq. (3) for filled polymers, this 
approach to the problem is only valid for very dilute suspensions. For ex- 
ample, eq. (3) predicts that for a volume fraction of 0.2 of rods of 15: 1 axial 
ratio, the viscosity ratio is 1400, compared to an experimental ratio of -2 
from Figure 4. Unless a system is Newtonian, the meaning of very low 
shear rate apparent viscosities is doubtful, since the data could equally well 
be interpreted as a strain rate-dependent yield stress. 

In general, the difficulty of processing filled polymers does not increase as 
fast as the increase in Young’s modulus with filler content. Examination 
of apparent viscosity data at high shear rates for the nylon fiber and kaolin 
systems shows that the viscosity increases are approximately given by 

t a / t a o  = 1 + 4 4 < 0.4 

for a shear rate of lo00 sec-I. This may represent a lower limit attainable 
a t  high shear stresses since Frisch and Simha’ quote Einstein as giving this 
result for the viscosity of dilute suspensions of spheres if the liquid slips 
over the surface. Under conditions where the apparent viscosity of a poly- 
mer decreases rapidly with increasing shear stress, this may be nearly the 
case. 

Thc use of spherical fillers decreases the melt compliance (measured in 
oscillatory shear flow) in proportion to the increase in viscosity. Other data 
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in the glass transition regionz3 and in the terminal flow regionz4 lead to the 
same conclusion. It has also been c o n c l ~ d e d ~ ~ ~ ~ ~  that the presence of glass 
beads increases the glass transition temperature of the composite by aboLtt 
5°C for + = 0.40. If this were true for the polystyrene system studied, 
then with the assumption that the viscosity is a function of (T - To), the 
viscosity of the composite would have risen by an extra factor of 1.5. In 
fact, Figure 2 shows that the data fell below eq. (2) even without this factor. 
A To increase would shift both the G" and G' curves in Figure 1 to lower fre- 
quencies by the same amount, so the point a t  which G' equals Gn would be 
expected to shift to lower frequencies with increasing (6. There is no evi- 
dence of a shift, so it appears that the glass spheres have no effect on the To 
of the polystyrene. 

C. Bridle and J. Scurfield kindly supplied the polystyrene-glass sphere and polyethyl- 
ene-silica samples, together with unpublished Young's modulus data on the latter. R. C. 
Roberts supplied the polyethylene-kaolin samples and unpublished modulus data. I 
am also grateful to J. W. Maddock for carrying out some of the flow measurements. The 
program on filled polymers was initiated by Dr. D. G. H. Ballard, and I am grateful for 
his support in the course of this investigation. 
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